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Abstract. We propose a method to probe dispersive atom–surface interactions
by measuring via two-photon Bragg spectroscopy the dynamic structure factor
of a Bose–Einstein condensate above corrugated surfaces. This method takes
advantage of the condensate coherence to reveal the spatial Fourier components
of the lateral Casimir–Polder interaction energy.
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1. Introduction

Dispersive atom–surface interactions are ubiquitous in several applications involving cold atoms
in the proximity of bulk surfaces, including atom chips for quantum information processing,
trapped neutral atoms and ions for precision measurements and quantum reflection of ultracold
matter from surfaces (for recent related works, see [1]). Such interactions arise from optical
dipole forces due to spatial gradients of the electromagnetic field caused by the reshaping of
electromagnetic (EM) quantum vacuum fluctuations in the presence of material boundaries (for
a review, see [2]). In recent years, degenerate bosonic [3] and fermionic [4] ultracold atomic
gaseous systems have been proposed as ideal probes of dispersive atom–surface interactions
owing to their exquisite control and characterization. In particular, frequency shifts of the center-
of-mass of a Bose–Einstein condensate (BEC) have been used to measure equilibrium and
non-equilibrium Casimir–Polder forces [5]4. Nontrivial geometrical effects, such as the lateral
Casimir–Polder force, could also be measured with a BEC in the proximity of a corrugated
surface [6].

In this work, we propose a method for probing atom–surface Casimir dispersive
interactions based on the modification of the excitation spectrum of a BEC brought close to
a corrugated material surface. The quantum Casimir interaction induced by such a surface
produces a periodic modulation of the trap potential that qualitatively changes the condensate
energy spectrum. For example, a quasi one-dimensional (1D) condensate develops first-order
perturbation gaps in its energy spectrum. The Bogoliubov states of the condensate, which are
significantly corrected, have wavenumber commensurable with the Fourier components of the
Casimir potential, and thus the lateral Casimir–Polder force can be inferred from the modified
spectrum. The Casimir-modified energy spectrum can be read out using two-photon Bragg
spectroscopy techniques, which have been used to reveal the low-energy spectrum of BECs
trapped in elongated potentials [7] and optical lattices [8]. In contrast to other proposals [6]
where the mechanical properties of the atomic cloud play an essential role in the description,
this method relies on quantum properties of coherent matter such as the response of a many-
body coherent interacting system to laser light. As we shall see, this effect is directly related
to the low-energy spectrum of the system and can be used to reveal lateral Casimir–Polder
interactions of atoms with a surface.

We stress that we do not mean this contribution as a proposal for an experiment to be
carried out in the immediate future. Our goal is to show how the distinctive features of a BEC,
as opposed e.g. to an incoherent gas, allow for new ways to explore atom–surface interactions.
Indeed, we consider the novelty of transducing the Casimir lateral force into a band gap as the
strongest point in this paper.

The paper is organized as follows. In section 2, we review the problem of a single-
atom potential above a corrugated surface. We use this result in section 3 to determine the
Casimir–Polder modified spectrum of an elongated BEC brought close to the surface. In
section 4, we discuss how the Casimir-modified energy spectrum can be probed by two-photon
Bragg spectroscopy. Finally, we give numerical estimates of the effect in section 5.

2. Casimir atom–surface interaction

A ground-state atom at position RA = (xA, yA, z A) in front of a corrugated surface (with surface
profile h(x, y) measured with respect to the plane z = 0, see figure 1) is subjected to an

4 For details of the experimental set-up, see McGuirk et al [5].
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Figure 1. Set-up for probing Casimir atom–surface interactions by measuring the
energy spectrum via two-photon Bragg spectroscopy. The energy spectrum of an
elongated three-dimensional (3D) BEC trapped parallel to a corrugated surface
is modified by the lateral component of the Casimir atom–surface interaction
energy.

atom–surface Casimir interaction energy U due to the electromagnetic vacuum and thermal
fluctuations that correlate the induced atomic electric dipole with fluctuating charges and
currents in the surface (figure 1). For example, for a uniaxial corrugated surface with the profile

h(x) =

∞∑
j=1

h j cos( jkcx), (1)

where h j are the Fourier components of the profile and λc = 2π/kc is the corrugation period,
the interaction energy can be split as

U (x, y, z) = UN(z) + UL(x, z), (2)

where UN(z) leads to a normal force (for flat surfaces it corresponds to the usual van der
Waals/Casimir–Polder forces) [2] and UL(x, z) leads to a lateral force that appears only for
non-planar surfaces [6]. The first-order expansion of UL in powers of h is

U (1)
L (xA, z A) =

∞∑
j=1

h j cos( jkcxA)g( jkc, z A), (3)

where g(k, z) is the response function [6] containing information about the atomic response
and about the geometry and optical response of the surface:

g(k, z A) =
h̄

ε0c2

∫
∞

0

dξ

2π
ξ 2α(iξ)

∫
d2k′

(2π)2
ak′,k′−k,

ak′,k′′ =
exp[−(κ ′ + κ ′′)z A]

2κ ′′

∑
p′,p′′

ε̂
+
p′(k′) · ε̂

−

p′′(k′′)R(1)

p′ p′′(k′, k′′),

where κ =
√

ξ 2/c2 + k2. We remark that this expansion is valid only when h(x) is the smaller
length scale in the problem; for non-perturbative results, see [9]. In the last expression, α(iξ)

is the dynamic polarizability of the atom along imaginary frequencies, ε̂
±

p′(k′) are polarization
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vectors for incoming and reflected EM fields on the surface, and R(1)

p′ p′′(k′, k′′) are first-order
reflection matrices of EM fields impinging on the surface (see [6, 10] for details). As discussed
in [11], geometry and conductivity corrections are approximately disentangled. The response
function can be written as

g(k, z) = ρ(k, z)ηF(z)F (0)

CP (z), (4)

where ρ(k, z) ≡ g(k, z)/g(0, z) contains geometry corrections and is an exponentially decaying
function of the single variable Z= kz A (for Z� 1 ). Real material corrections are encapsulated
in ηF (06 ηF 6 1), which is the conductivity correction to the normal component of the
Casimir–Polder (CP) force F (0)

CP in the planar perfect reflector geometry. In the limit of
separations much larger than the corrugation period (kcz A � 1), the exponential decrease in
g implies that the j = 1 term dominates in (3), resulting in an effectively sinusoidal potential

U (1)
L = h1 cos(kcxA)g(kcz A), (kcz A � 1). (5)

Note that the same result holds for a height profile with a single Fourier component in
a decomposition such as equation (1), so for large enough separations (z A � λc) different
corrugation profiles become indistinguishable.

3. Casimir-modified Bose–Einstein condensate energy spectrum

Instead of considering the effect on a single atom, we now compute the low-energy spectrum
of an interacting cloud of condensed atoms in the presence of the corrugated surface. Consider
a cigar-shaped BEC trapped by an axially symmetric harmonic external potential, so that it is
parallel to the corrugated surface, as shown in figure 1. The Casimir atom–surface interaction
affects the mean-field dynamics of the condensate [3], governed by the Gross–Pitaevskii
equation (GPE)

ih̄∂tϕ = −(h̄2/2m)∇2ϕ + [UN(z) + UL(x, z)]ϕ + (m/2)(ω2
r r 2 + ω2

x x2)ϕ + g|ϕ|
2ϕ, (6)

where ϕ is the condensate wavefunction, m is the atomic mass, g = 4π h̄2a/m, a is the s-
wave scattering length and ωr (ωx ) is the radial (axial) trapping frequency, ωr � ωx .5 This
interaction also modifies the structure of Bogoliubov fluctuations around the mean-field solution
and the corresponding energy spectrum. Since the Casimir atom–surface interaction is a small
perturbation to the external trapping potential, we will calculate the modifications to the BEC
spectrum in first-order perturbation theory.

In principle, one can start from the unperturbed Bogoliubov spectrum of the prolate
elongated BEC, which has been calculated numerically in [12]. In the small-wavelength limit
1/q � l (where q is the axial quasi-particle momentum), the spectrum can be well described
by the discrete multibranch spectrum En,m(q) of an infinitely long cylindrical condensate,
where n = 0, 1, 2, . . . is the radial quantum number and m the radial angular momentum [13].
Approximate analytical expressions for this spectrum can be found in some limiting cases,
which we analyze in the following two subsections.

5 Although Casimir forces are known to be non-additive, the fact that the condensate is a dilute object justifies the
computation of the total Casimir BEC-surface force as a sum over the Casimir forces between the surface and the
individual atoms in the condensate.
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3.1. Low-energy excitations and small chemical potential

We first consider the case

µ − h̄ωr � 8h̄ωr . (7)

In this situation, the radial confinement is so tight that the dynamics of the BEC wavefunction
is effectively 1D, the radial dynamics being ‘frozen’. The Thomas–Fermi (TF) approximation
for the radial dynamics is not valid in this regime, so we describe the effective dynamics
writing the 3D wavefunction ϕ in a basis { fn(r)} of eigenfunctions of the radial operator
−(h̄2/2m)1r + mω2

r r 2/2, namely

ϕ =

∑
n

fn(r)φn(x, t) (8)

(symmetry imposes no angular dependence). Projecting on to the fundamental radial mode
f0(r), it follows that the axial wavefunction φ0(x, t) satisfies a 1D GPE with an effective
potential

Veff(x) = h̄ωr + UN(zcm) + UL(x, zcm), (9)

and an effective interaction geff = g/2πσ 2, with σ 2
= h̄/mωr (note that we have approximated

z by the BEC center-of-mass position zcm; in a typical situation UN(zcm) � h̄ωr ). The nonlinear
coupling of φ0 to higher order modes φn can be neglected when µ − h̄ωr � 8h̄ωr , as can be
seen when projecting the equation on to f0. When the typical axial length l verifies l � λc,
the condensate behaves locally as an interacting quasi-1D cold atomic gas in the presence of a
weak Casimir atom–surface potential. The effect of the slowly varying axial external potential
mω2

x x2/2 will be incorporated in section 4 using a local density approximation (LDA). In the
absence of the surface, the energy spectrum is given by the Bogoliubov spectrum for a quasi-1D
homogeneous BEC, namely

En,m(q) ≈ En=0,m=0(q) ≈ EB(q)

=

√
(h̄2q2/2m)(h̄2q2/2m + 2µ̃), (10)

where µ̃ = µ − h̄ωr − UN(zcm). To study the Casimir-modified spectrum, we express the 1D
BEC wavefunction as

φ(x, t) = exp

(
−i

µt

h̄

)
[φTF(x) + δφ(x, t)], (11)

where

φTF(x) = {[µ̃ − UL(x, zcm)]/geff}
1/2 (12)

is the TF mean-field solution to the GPE above (valid when µ̃ is greater than the typical kinetic
energy due to spatial gradients), and δφ(x, t) = u(x) exp(−i(Et/h̄)) + v(x) exp(i(Et/h̄)) are
the Casimir-modified Bogoliubov excitations. These are solutions to

Eu = −
h̄2

2m

d2u

dx2
+ (µ̃ − UL(x, zcm))(u + v∗),

−Ev = −
h̄2

2m

d2v

dx2
+ (µ̃ − UL(x, zcm))(u∗ + v).

(13)
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Figure 2. Modified energy spectrum of an elongated BEC trapped parallel
to a surface in the presence of a weak periodic lateral Casimir atom–surface
interaction. The inset shows the function F(q) that modulates the energy gaps
1Eqn = F(qn)|UL,nkc| of the unperturbed Bogoliubov spectrum.

We now solve these equations to first order in powers of UL. We write the Casimir-modified
BEC energy spectrum as

E(q) = E (0)(q) + E (1)(q) + · · · . (14)

Zeroth-order eigenfunctions are plane waves, namely

u(0)(x) =

∑
q

u(0)
q exp(iqx),

v(0)(x) =

∑
q

v(0)
q exp(iqx),

(15)

and the corresponding spectrum E (0)
q is equal to the Bogoliubov one, EB(q). Expressing the

Casimir energy UL(x, zcm) in a cosine Fourier series (e.g. as in the small-h limit, equation (3)),
it follows that this weak periodic perturbation opens gaps in the unperturbed energy spectrum
at momenta qn = ±nkc/2 (n = 0, 1, . . .). As long as each Fourier component |UL,nkc| � E (0)

q
(which is consistent with the perturbative expansion), modes with different values of n are
effectively uncoupled, and the gap for any fixed n is obtained by solving the eigenvalue problem
for degenerate unperturbed states nkc/2 and −nkc/2. Solving the two-state problem for almost
degenerate states nkc/2 + ε and −nkc/2 + ε, it is easy to find to first-order the energy branches
(i.e. Bloch bands) E±(q) and the energy gaps between them on the border of the first Brillouin
zone:

1Eqn = |UL,nkc| × F(qn), F(q) = Tq/E (0)
q , (16)

where Tq is the free kinetic energy

Tq = h̄2q2/2m, (17)

and F(q) is a dimensionless suppression factor, plotted in figure 2 together with the energy
branches. Note that F(q) → 1 for q � kµ̃ = (2mµ̃/h̄2)1/2, corresponding to the particle-like
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region of the spectrum. For q/kµ̃ � 1, F(q) → 0 [14]. Note that x-independent terms in the
Casimir energy (like UN) do not affect the energy gaps, and therefore cannot be probed by
Bragg spectroscopy. Our result (16) for the energy gaps due to the Casimir–Polder interaction
is equivalent to those derived in previous studies of BECs in periodic potentials [14].

3.2. Low-energy excitations and large chemical potential

For systems with higher densities, the typical situation becomes µ � h̄ωr . In this case, the
radial dynamics can be described via the TF approximation, and the unperturbed spectrum can
be expanded in powers of q R (with R = (2µ/mω2

r )
1/2 being the radial TF radius) [15]

E2
n,m=0(q) = 2(h̄ωr)

2n(n + 1) + (q R)2

(
h̄ωr

2

)2

+ O((q R)4). (18)

The lowest mode (n = 0) corresponds to axially propagating phonons with a speed of sound
smaller by a factor

√
2 than the Bogoliubov speed of sound of an homogeneous 3D BEC.

Proceeding as before, one can compute the first-order energy gaps produced by the Casimir
atom–surface interaction acting on the radially confined BEC in the high density limit, which
results in 1Eqn = (3h̄ωr/4µ) × (kc R/2) × |UL,nkc|. Therefore, for large chemical potentials the
Casimir-induced energy gaps are so small that they cannot be detected via Bragg spectroscopy
(see below). It is thus convenient to consider condensates with relatively small particle densities.

3.3. Beyond periodic corrugations

So far we have considered the simplest case of a uniaxial corrugated surface, with the Fourier
spectrum H(kx) ∝ δ(kx − kc). A similar procedure to the one described above can be followed
for surfaces with more general corrugation profiles. For example, if the surface may be described
by two fundamental wavenumbers kc1 and kc2, namely

h(x) =

∑
j

h(1)

j cos( jkc1x) +
∑

j

h(2)

j cos( jkc2x), (19)

one can apply the same calculation as in the single uniaxial case provided the two-state problem
defined for each fundamental wavenumbers kc1 and kc2 result independent of each other. This
approach fails when the wavenumbers are close enough, because then the two sets of states
will mix through the Casimir–Polder interaction. Thus, there will be a minimum separation
in momentum space, say δkmin, such that if kc1 and kc2 satisfy |kc1 − kc2| � δkmin, the two
2 × 2 problems are independent, but when this condition is not satisfied, the first-order energy
correction will have to be computed taking into account that one is no longer dealing with two
uncoupled systems. It is not difficult to see that the latter case yields a 6 × 6 problem; however,
in such cases, the relation between the energy gaps and the spatial Fourier components of the
potentials may not be invertible.

In fact, for certain surfaces, notably for those with stochastic roughness, this uncoupling
condition can easily break down, and the method proposed in this paper does not work. One
can estimate the width δkmin on dimensional grounds. Taking into account that the perturbative
parameter is UL/E (0), the minimum width should be of order δkmin ≈ kc1,2(UL/E (0))kc1,2 . We
have verified that this is a good estimate by a direct diagonalization of the exact problem. Note
also that this gives the minimum difference in momentum space that can be resolved when two
fundamental wavenumbers kc1 and kc2 are present, and is the reason why Bragg spectroscopy of
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the low-energy BEC spectrum cannot resolve the Fourier components of the Casimir potential
UL(kx , ky) produced by a rough surface. In the following, we will restrict ourselves to the
simplest uniaxial corrugated case.

4. Bragg spectroscopy of the Casimir potential

Consider two probe laser fields of frequencies ω1 and ω2 and linear momentums k1 and k2 in
the Bragg configuration of figure 1,

q = qx̂ = k1 − k2, ω = ω1 − ω2. (20)

Bragg spectroscopy is an ideal tool for probing the BEC energy spectrum via the measurement
of the dynamic structure factor (DSF) at zero temperature. The homogeneous DSF is found to
be [16]

S(q, ω) =
Nh̄2q2

2m EB(q)
δ(h̄ω − EB(q)), (21)

where N is the total number of BEC atoms. A similar expression is found for the Casimir-
modified energy spectrum (calculated above neglecting the effect of the axial trapping potential
∝ ω2

x x2), and furthermore, the effect of the axial trapping potential can be incorporated via
LDA averaging over the TF axial density profile [16]. The average can be calculated via the
integration of the DSF for the Casimir-modified spectrum using the local density profile given
by [1 − (2x/ l)2]. Performing the integral one finds two branches for the DSF, denoted below by
S±(q, ω),

S±(q, ω) ∝

[
∂ E±(x, q)

∂x

∣∣∣∣
x∗

]−1

, (22)

where each branch S±(q, ω) is associated with one energy branch through the relation
h̄ω = E±(x∗, q). This last equation determines implicitly x∗

= x∗(ω), which is to be used in
equation (22) together with the local spectrum, which is defined by

E±(x, q) = E (0)(x, q) ±
Tq

2E (0)(x, q)
UL,nkc,

E (0)(x, q) =

√
T 2

q + 2Tqµ̃
[
1 − (2x/L)2

]
,

(23)

where Tq is given by (17). This gives a function that is not proportional to a delta function but is
still divergent when h̄ω = E±(0, q), which means that there is a resonance when h̄ω is the local
energy at the origin. Figure 3 shows the two branches of the DSF resulting from the Casimir
atom–surface interaction for particular values of the parameters.

The actual observable in Bragg spectroscopy is not S(q, ω) but the total momentum PX

transferred to the BEC, whose equation of motion is given by [17]

dPX

dt
= − mω2

x X +
∑
n,i

UL,nkc(nkc)〈sin(nkcxi)〉

+
h̄qV 2

B

2

∫
dω′[S(q, ω′) − S(−q, −ω′)]

sin([ω − ω′]t)

ω − ω′
. (24)
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q
kc/2

S−(q, ω)

ω (Hz)

S(q, ω)

S+(q, ω)

(a.u.)

∆ω

Figure 3. Dynamic structure factor (in arbitrary units) as a function of the
detuning ω and the wavevector q/(kc/2). The parameters are chosen for 87Rb
such that µ̃ = 2π h̄ 493 Hz, U (1)

L,kc
f (kc/2) = 2π h̄ 0.017 Hz and λc = 2π/kc =

9.75 µm (see text).

The first term is due to the trapping potential (X =
∑

i xi , with xi being the x-coordinates of the
individual atoms in the BEC), the second term is the Casimir lateral energy UL and the last term
is the response to the Bragg lasers, which are assumed to have a Heaviside-theta envelope (VB

is the amplitude of the Bragg potential created by the lasers). The time derivative of PX(t) is
proportional to S(q, ω) for long enough pulses, that is, of duration τ larger than the inverse of
the typical energy scale E = EB(kc/2), provided that h̄ωx � E and UL is negligible. This last
condition is verified within our perturbative expansion, UL,nkc � E , which is further improved
by partial cancellation of the sine terms in the second term above. Thus, in the case we are
considering, the resonances of the DSF at fixed q reveal the Casimir-modified energy spectrum.
This gives an indirect measure of the Casimir–Polder interaction because once the gap in the
spectrum (1ω) has been measured, the Fourier coefficient of the CP potential can be found using
the relation (16). Note that this fact does not depend on the approximations we have done to find
an explicit expression for the CP lateral potential to first order in the corrugation amplitude.

5. Numerical estimations and discussion

Even if we do not mean this contribution as a blueprint for an experiment to be carried out with
the present technology, it is relevant to discuss whether such an experiment would be feasible
in principle. In this section, we shall provide estimates for the strength of the effect in a typical
experimental configuration. We shall not go into matters of experimental technique, such as how
to sustain an adequate alignment of the elongated trap potential with respect to the surface, but
rather focus on what can be said about the achievable band gap based on fundamental physics.

On the one hand, it is convenient to open gaps at large values of q (short-wavelength
modes) in order to maximize F(q). However, on the other hand, this would imply exponentially
suppressed Fourier components of the Casimir–Polder lateral potential |UL,q |. Therefore, the
optimal parameters will result from a compromise between the two factors in equation (16). Let
us evaluate the Casimir atom–surface lateral potential and the corresponding energy gaps in the
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BEC spectrum for a benchmark configuration. Consider a sinusoidal uniaxial corrugated surface
with corrugation wavelength λc = 2π/kc = 9.75 µm and corrugation amplitude h = 1 µm. In
the following, we will assume that the surface is separated by zcm = 3 µm from a cigar-shaped
87Rb condensate with N = 104 atoms, trapped in an axially symmetric potential with trapping
frequencies ωx = 2π × 0.83 Hz and ωr = 2π × 2.7 kHz. For this trapping frequency, the radius
of the BEC is σ = 0.2 µm. The chemical potential µ̃ and the TF axial length l are determined
by the relations

N =

∫
φ2

0,TF(x)dx, µ̃ =
1

2
mω2

x(l/2)2. (25)

That is, l/2 = (3geff N/2mω2
x)

1/3
= 408 µm and µ̃ = (mω2

x/8)1/3(3geff N/2)2/3
= 2π h̄ ×

493 Hz. For these parameters, µ̃ � 8h̄ωr , so that we are under the conditions of section 3.1.
The TF approximation in the axial direction is also satisfied because the relevant kinetic energy
is Tq1=kc/2 = 2π h̄ × 6.05 Hz � µ̃. The typical Bogoliubov energy is EB(q1) = 2π h̄ × 77 Hz,
and the suppression factor is F(q1) = 0.08.

In order to compute the order of magnitude of the dispersive atom–surface energy, we
first consider the ideal case of a perfectly reflecting corrugated surface (ηF = 1). The Casimir
potential is computed from equation (3) (note the caveat that, for the chosen geometrical
parameters h/zcm ≈ 0.33, we are at the border of the validity of the first-order approximation;
the exact, non-perturbative expression can be found in [9]). In the retarded Casimir–Polder limit,
z � λA (where λA is the typical atomic transition wavelength), the atom lateral CP potential for
the perfectly reflecting surface is given to first order in h by U (1)

L (x, z) = h cos(kcx)gperf
CP (kc, z),

where [6]

gperf
CP (k, z) = −

3h̄cα(0)

8π 2ε0z5
e−Z(1 +Z+ 16Z2/45 +Z3/45), (26)

with Z= kcz and α(0)/ε0 = 47.3 × 10−30 m3 is the static polarizability of Rb atoms. Therefore,
the Fourier coefficient U (1)

L,kc
= hgperf

CP (kc, zcm) is approximately 2π h̄ × 0.22 Hz. Corrections due
to real material properties can be calculated from [11]. For the atom–surface separations
considered, the geometry correction factor ρ is well approximated by the perfect reflector case
(figure 3 of [11]), and the reduction factor is ηF ≈ 0.9 for gold and ηF ≈ 0.7 for silicon (figure 4
of [11]). Therefore U (1)

L,kc
is approximately 2π h̄ × 0.2 Hz and 2π h̄ × 0.16 Hz for gold and silicon

surfaces, respectively.
So far we have dealt with the case of zero-temperature Casimir atom–surface interactions.

Thermal corrections to these interactions can be easily computed replacing the integral over
frequencies by a sum over thermal Matsubara frequencies. Thermal effects start to be important
for distances z A larger than the thermal wavelength of the photon, λT = h̄c/kBT , where T is the
temperature of the environment, T = TE (assumed to be in thermal equilibrium with the surface
at temperature TS = TE; see [18])6. Other thermal effects may affect the coherence length of
the BEC in the 1D configuration, yielding an upper bound on the temperature of the thermal
cloud around the condensate, TBEC. Note that the surface and environment temperatures TS

and TE are very different from the BEC temperature (typically hundreds of K against tenths
of nK) and play completely different roles. In the quasi-1D regime considered here, it can be
shown [16] that the typical decay length of the coherence is given by 2n1h̄2/kBTBECm, where
n1 is the 1D density. Using the above parameters, one finds that the temperature of the BEC

6 For a discussion of Casimir–Polder forces in and out of thermal equilibrium, see [18].
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should be of the order of nK to preserve the axial coherence up to scales of the order of the
size of the sample. However, we note that a finite phase coherence length (shorter than the axial
size but larger than the corrugation period) is sufficient to probe lateral Casimir–Polder forces.
Thus, such extremely cold BEC temperatures for maintaining global axial coherence may not be
required.

Using the above estimations for the suppression factor and for the Casimir atom–surface
energy, the gap in the energy spectrum U (1)

L,kc
F(kc/2) is of the order of 2π h̄ × 0.017 Hz, both

for ideal and real surfaces. This shows that in order to measure the lateral Casimir potential, it is
required to resolve a 2π h̄ × 0.017 Hz gap in a spectrum centered at 2π h̄ × 77 Hz. This could be
achieved by Bragg spectroscopy if ωx , which limits the maximum resolution, is low enough7.
For the typical value chosen before (ωx = 2π × 0.83 Hz), the spectral resolution should reveal
the sub-Hz structure. However, it should be noted that such high sensitivities have not been
experimentally achieved yet8. Future improvements in cold atom technology could bring within
reach the detection of nontrivial geometry effects of quantum vacuum via Bragg spectroscopy
of a BEC.

Let us now compare our proposed set-up for measuring lateral Casimir interactions via
Bragg spectroscopy with the method of frequency shifts of the center-of-mass oscillations of the
BEC, which was demonstrated in a measurement of the normal Casimir–Polder force [5] and
proposed as a suitable method for the detection of the lateral Casimir–Polder interaction [6].
The frequency shift method applied to measuring lateral forces has a limited spatial resolution
due to the TF radii of the condensate. Furthermore, if tighter configurations are considered in
such a context, the relative frequency shift becomes smaller than the experimental resolution
reported in [5]. For example, using the parameters proposed above one finds that the maximum
relative change in the lateral frequency shift is about 7 × 10−7, while the reported experimental
sensitivity of those experiments was 5 × 10−5 [5]. In contrast, the tighter Gaussian configuration
proposed here would give an improved resolution in the distance to the surface, and the axial
spatial resolution would only be limited by the accuracy in determining the laser wavenumber
differences and depends neither on the radial density profile nor on any oscillation amplitude.
However, as pointed out before, both techniques for measuring lateral Casimir–Polder forces
remain at present on the edge of detectability.

6. Concluding remarks

Geometry effects of the quantum vacuum, such as the lateral Casimir–Polder atom–surface
interaction, modify the energy spectrum of a BEC in close proximity to a corrugated surface.
The qualitative differences in the lowest energy (phonon-like) band were characterized in this
context and a possible experimental set-up for measuring the effect was discussed. As we have
shown, using Bragg spectroscopy to measure this effect seems challenging with present-day
technology but could become feasible in the near future, opening a new window on the physics
of the interaction between surfaces and coherent matter.
7 We assume that τωx < 1 in order for LDA to be valid along the axial direction and to avoid possible sloshing of
the BEC.
8 A much larger signal can be attained when the BEC is placed closer to the surface. Scaling the parameters
given above to zcm = 0.7 µm, λc = 4 µm and h = 50 nm results in a gap of 2π h̄ × 3.98 Hz centered at E =

2π h̄ × 191 Hz. Although this energy range has been experimentally demonstrated [7], the minimum distance of
a BEC to the surface, at present, is limited to 2 µm.
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